Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol. 2013;33(9):2252-60. PubMed abstract.
Abu-Hamdah R, Rabiee A, Meneilly G, Shannon R, Andersen D, Elahi D. 2009. Clinical review: the extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab. 2009;94(6):1843-52.
Aramadhaka L, Prorock A, Dragulev B, Bao Y, Fox J. 2013. Connectivity maps for biosimilar drug discovery in venoms: The case of Gila Monster Venom and the anti-diabetes drug Byetta(®). Toxicon 69:160-7. Article available via OhioLINK Electronic Journal Center.
Furman B. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon. 2012;59(4):464-71. PubMed abtract. Article available via OhioLINK Electronic Journal Center.
Vilsbøll T, Christensen M, Junker A, Knop F, Gluud L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.
Nikfar S, Abdollahi M, Salari P. The efficacy and tolerability of exenatide in comparison to placebo; a systematic review and meta-analysis of randomized clinical trials. J Pharm Pharm Sci. 2012;15(1):1-30.
Mason E. Gila monster's guide to surgery for obesity and diabetes. J Am Coll Surg. 2008;206(2):357-60. Article available via OhioLINK's Electronic Journal Center.
Deane A, Chapman M, Horowitz M. The therapeutic potential of a venomous lizard: the use of glucagon-like peptide-1 analogues in the critically ill. Crit Care. 2010;14(5):1004.
Akef H, Kotb N, Abo-Elmatty D, Salem S. Anti-proliferative effects of Androctonus amoreuxi scorpion and Cerastes cerastes snake venoms on human prostate cancer cells. J Cancer Prev. 2017;22(1):40-46.
Kini R. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006;397(3):377-87. Free full-text of the article available in PubMed Central.
Dias EHV, Dos Santos Paschoal T, Da Silva AP, et al. BaltPLA2: a new phospholipase A2 from Bothrops alternatus snake venom with antiplatelet aggregation activity. Protein Pept Lett. 2018; epub ahead of print. PubMed abstract.
Lin E, Wang Q, Swenson S, Jadvar H, Groshen S, Ye W, et al. The disintegrin contortrostatin in combination with docetaxel is a potent inhibitor of prostate cancer in vitro and in vivo. Prostate. 2010;70(12):1359-70. PubMed abstract. Article available via OhioLINK's Electronic Journal Center.
Koh C, Kini R. From snake venom toxins to therapeutics--cardiovascular examples. Toxicon. 2012;59(4):497-506. Article available via OhioLINK's Electronic Journal Center.
Swenson S, Costa F, Minea R, Sherwin R, Ernst W, Fujii G, et al. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol Cancer Ther. 2004;3(4):499-511. PubMed abstract.
McCleary R, Kini R. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56-74. Article available via the OhioLINK Electronic Journal Center.
Gilchrist I. Platelet glycoprotein IIb/IIIa inhibitors in percutaneous coronary intervention: focus on the pharmacokinetic-pharmacodynamic relationships of eptifibatide. Clin Pharmacokinet. 2003;42(8):703-20. Available via the OhioLINK Electronic Journal Center
Schmitmeier S, Markland F, Schönthal A, Chen T. Potent mimicry of fibronectin-induced intracellular signaling in glioma cells by the homodimeric snake venom disintegrin contortrostatin. Neurosurgery. 2005;57(1):141-53; discussion 141-53. PubMed abstract.
Oyama E, Takahashi H. Purification and characterization of two platelet-aggregation inhibitors, named angustatin and H-toxin TA(2), from the venom of Dendroaspis angusticeps. Toxicon. 2015;93:61-7.
Vonk F, Jackson K, Doley R, Madaras F, Mirtschin P, Vidal N. Snake venom: from fieldwork to the clinic: recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays. 2011;33(4):269-79. Article free from publisher.
Gay C, Sanz L, Calvete JJ, Pla D. Snake Venomics and Antivenomics of Bothrops diporus, a Medically Important Pitviper in Northeastern Argentina. Toxins (Basel). 2015 Dec 25;8(1). pii: E9.
Roy A, Zhou X, Chong M, D'hoedt D, Foo C, Rajagopalan N, et al. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra). J Biol Chem. 2010;285(11):8302-15.
Granada J, Kleiman N. Therapeutic use of intravenous eptifibatide in patients undergoing percutaneous coronary intervention: acute coronary syndromes and elective stenting. Am J Cardiovasc Drugs. 2004;4(1):31-41. PubMed abstract. Article available via OhioLINK's Electronic Journal Center.
Laustsen AH, Lomonte B, Lohse B, Fernández J, Gutiérrez JM. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development. J Proteomics. 2015;119:126-42. PubMed abstract
Bishop BM, Juba ML, Russo PS, et al. Discovery of novel antimicrobial peptides from Varanus komodoensis (Komodo dragon) by large scale analyses and de novo-assisted sequencing using electron transfer dissociation mass spectrometry. J Proteome Res. 2017;[Epub ahead of print].
PubMed abstract.
Chung EMC, Dean SN, Propst CN, et al. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. npj Biofilms and Microbiomes. 2017.3;9.
Holthausen DJ, Lee SH, Kumar VT, et al. An amphibian host defense peptide is virucidal for human H1 hemagglutinin-bearing influenza viruses. Immunity. 2017;46(4):587-595.
Xie J, Gou Y, Zhao Q, et al. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii. J Pept Sci. 2014; Epublished ahead of print publication. PubMed abstract.
Vineeth Kumar TP, Asha R, Shyla G, George S. Identification and characterization of novel host defense peptides from the skin secretion of the fungoid frog, Hydrophylax bahuvistara (Anura: Ranidae). Chem Biol Drug Des. 2017. [E-pub ahead of print]. PubMed abstract.
Mu L, Tang J, Liu H, et al. A potential wound-healing-promoting peptide from salamander skin. FASEB J. 2014; E-published ahead of print. Article available to OhioLINK patrons.
Conlon J, Mechkarska M, Ahmed E, Leprince J, Vaudry H, King J, et al. Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(3):350-4. PubMed abstract
Liu D, Wang Y, Wei L, Ye H, Liu H, Wang L, et al. Snake venom-like waprin from the frog of Ceratophrys calcarata contains antimicrobial function. Gene. 2013;514(2):99-104. Article available via OhioLINK Electronic Journal Center.
Fieck A, Hurwitz I, Kang A, Durvasula R. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol. 2010;125(4):342-7.
Icon Legend
= for NEOMED students, faculty, staff, & clinical faculty only.
= for some Associated Hospital library patrons.
= freely available resource.
Please contact the information desk (330-325-6600) with questions about accessing the resources.